Cyclic Sieving and Rational Catalan Theory
نویسندگان
چکیده
Let a < b be coprime positive integers. Armstrong, Rhoades, and Williams (2013) defined a set NC(a, b) of ‘rational noncrossing partitions’, which form a subset of the ordinary noncrossing partitions of {1, 2, . . . , b− 1}. Confirming a conjecture of Armstrong et. al., we prove that NC(a, b) is closed under rotation and prove an instance of the cyclic sieving phenomenon for this rotational action. We also define a rational generalization of the Sa-noncrossing parking functions of Armstrong, Reiner, and Rhoades (2015).
منابع مشابه
Cyclic Sieving Phenomena on Annular Noncrossing Permutations
We show cyclic sieving phenomena on annular noncrossing permutations with given cycle types. We define annular q-Kreweras numbers, annular q-Narayana numbers, and annular q-Catalan numbers, and show that a sum of annular q-Kreweras numbers becomes an annular q-Narayana number and a sum of annular q-Narayana numbers becomes an annular q-Catalan number. We also show that these polynomials are clo...
متن کاملCyclic sieving of increasing tableaux and small Schröder paths
An increasing tableau is a semistandard tableau with strictly increasing rows and columns. It is well known that the Catalan numbers enumerate both rectangular standard Young tableaux of two rows and also Dyck paths. We generalize this to a bijection between rectangular 2-row increasing tableaux and small Schröder paths. Using the jeu de taquin for increasing tableaux of [Thomas–Yong ’09], we t...
متن کاملCyclic Sieving Phenomenon on Matchings
School of Mathematical and Statistical Sciences, Arizona State University Abstract. Reiner-Stanton-White defined the cyclic sieving phenomenon (CSP) associated to a finite cyclic group action on a finite set and a polynomial. Sagan observed the CSP on the set of non-crossing matchings on [2n] := {1, 2, . . . , 2n} using the cyclic group C2n generated by a cyclic shift of order 2n and the q-Cata...
متن کاملThe cyclic sieving phenomenon
The cyclic sieving phenomenon is defined for generating functions of a set affording a cyclic group action, generalizing Stembridge’s q 1⁄4 1 phenomenon. The phenomenon is shown to appear in various situations, involving q-binomial coefficients, Pólya–Redfield theory, polygon dissections, noncrossing partitions, finite reflection groups, and some finite field q-analogues. r 2004 Elsevier Inc. A...
متن کاملCyclic sieving, promotion, and representation theory
We prove a collection of conjectures of D. White [37], as well as some related conjectures of Abuzzahab-Korson-Li-Meyer [1] and of Reiner and White [21], [37], regarding the cyclic sieving phenomenon of Reiner, Stanton, and White [22] as it applies to jeu-de-taquin promotion on rectangular tableaux. To do this, we use Kazhdan-Lusztig theory and a characterization of the dual canonical basis of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 23 شماره
صفحات -
تاریخ انتشار 2016